Topic For Semester-3, Paper-CC-6 (UG Hons.)

BASIS AND DIMENSION

Linearly Independent Set: A finite set of vectors v_1, v_2, \dots, v_n of a vector space V over a field F is said to be linearly independent if $c_1v_1 + c_2v_2 + \dots + c_nv_n = \theta$, $c_i \in F, i = 1, 2, \dots, n \rightarrow c_i = 0 \ \forall i$ otherwise linearly dependent.

- If the set *S* = {*v*₁,*v*₂, ..., *v_n*} of vectors of the vector space *V* over a field *F* be linearly independent then none of the vectors *v*₁,*v*₂, ..., *v_n* can be a zero vector.
- A set of vectors containing the null vector θ in a vector space V(F) is linearly dependent.
- The set consisting of a single non-zero vector α in a V(F) is linearly independent.
- If two vectors be linearly dependent, then one of them is a scalar multiple of the other.

Spanning Set(Linear Span): Let V be a vector space over a field F and S be any non-empty subset of V, Then the linear span of S is defined as the set of all linear combination of the elements of S and denoted by L(S).

BASIS

Definition: A basis *S* of a vector space *V* over a field *F* is a linearly independent subset of *V* that spans *V*. This means that a subset *S* of *V* is a basis if it satisfies the two following conditions:

- The linear independence property: For every finite subset {v₁,v₂, ..., v_m} of *S* if c₁v₁ + c₂v₂ + ··· + c_mv_m = θ for some c₁ = c₂ = ··· ... = c_m = 0 and
- The spanning property: For every vector v in V, we can choose a_1, a_2, \dots, a_n in Fand v_1, v_2, \dots, v_n in S such that $v = a_1v_1 + a_2v_2 + \dots + a_nv_n$ The scalars a_i are called the coordinates of the vector v with respect to the basis S.

Examples:

1. The set

 $A = \{(1,0,0,,\dots,0), (0,1,0,,\dots,0), \dots, (0,0,0,\dots,1,0), (0,0,0,\dots,0,1)\}$

is a basis of the n-dimensional vector space. This is called the standard basis .

- 2. The infinite set $S = \{1, x, x^2, \dots, x^n, \dots\}$ is a basis of a vector space P(x) of all polynomials over a field F.
- 3. The real square matrix of second order

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is a linear vector space, and that a basis of it is the subset $S = \{\alpha, \beta, \gamma, \delta\}$, where $\alpha, \beta, \gamma, \delta$ are matrices

$$\alpha = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \beta = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \gamma = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad \delta = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Properties:

- If *B* is a linearly independent subset of a spanning set *L*subset of *V*, then there is a basis *S* such that *B*(*S*(*L* that means If {*v*₁, *v*₂, ..., *v_m*} be a basis of a finite dimensional vector space *V* over a field
- *F* then any linearly independent set of vectors in *V* contains at most *m* vectors.
 There exists atleast a basis for every finitely generated vector space.
- If there exist more than one basis of a vector space V(F), all bases of V(F) have the same cardinality, which is called the dimension of V.
- A generating set *S* is a basis of *V* iff it is minimal, i.e. no proper subset of *S* is also a generating set of *V*.
- A linearly independent set *L* is a basis iff it is maximal, i.e. it is not a proper subset of any linearly independent set.

DIMENSION

Definition: The number of vectors in a basis of a vector space *V* is said to be the dimension (or rank) of *V* and is denoted by dim V. The null space $\{\theta\}$ is said to be of dimension 0.

Examples:

- 1) The dimension of the vector space R^2 is 2, since $E = \{(1,0), (0,1)\}$ is a basis.
- 2) The dimension of the vector space $R_{m \times n}$ of all $m \times n$ real matrices is mn, since the set { $E_{11}, E_{12}, \dots, E_{mn}$ },where E_{ij} is an $m \times n$ matrix having 1 as the *ij* th element and 0 elsewhere, is a basis.
- 3) The dimension of the vector space P_n of all real polynomials in x of *degree* < n together with the zero polynomial, is n. The set of polynomials $\{1, x, x2, \dots, xn 1\}$ is a basis.
- 4) The vector space *P* of all real polynomials is infinite dimensional.

Worked Examples:

1. For what real values of k does the set $S = \{(k, 0, 1), (1, k + 1, 1), (1, 1, 1)\}$ form a basis of R^3 .

Solution: Since dimension of R^3 is 3 and the no of element of the set S is 3 so S form a basis if S is linearly independent set.

i.e.
$$\begin{vmatrix} k & 0 & 1 \\ 1 & k+1 & 1 \\ 1 & 1 & 1 \end{vmatrix} \neq 0$$

i.e. $k\{(k+1)-1\}+1\{1-(k+1)\}\neq 0$

i.e. $k^2 - k \neq 0$ i.e. $k(k-1) \neq 0$

Therefore for $k \neq 0,1$ the set S form a basis of R^3 .

2. Let $\{\alpha, \beta, \gamma\}$ be a basis of a real vector space V and c be a non-zero real number. Prove that

 $\{\alpha + c\beta, \beta, \gamma\}$ is a basis of V.

Solution: Since $\{\alpha, \beta, \gamma\}$ be a basis of V so the dimension of V is 3.

So $\{\alpha + c\beta, \beta, \gamma\}$ is a basis of V if we show that this set is linearly independent.

Now $,c_1(\alpha + c\beta) + c_2\beta + c_3\gamma = \theta$

i.e. $c_1 \alpha + (c_1 c + c_2)\beta + c_3 \gamma = \theta$ (1)

since $\{\alpha, \beta, \gamma\}$ be a basis of V so α, β, γ are linearly independent.

Therefore, from (1) $c_1 = 0, c_1c + c_2 = 0, c_3 = 0$

i.e. $c_1 = c_2 = c_3 = 0$

so, $\{\alpha + c\beta, \beta, \gamma\}$ is a linearly independent set and therefore is a basis of V.

Replacement Theorem:

If $\{v_1, v_2, \dots, v_n\}$ be a basis of a vector space *V* over a field *F* and a non-zero vector β of *V* is expressed as $\beta = a_1v_1 + a_2v_2 + \dots + a_nv_n$, $a_i \in F$, then if $a_j \neq 0, \{v_1, v_2, \dots, v_{j-1}, \beta, v_{j+1}, \dots, v_n\}$ is a new basis of *V*.[That is, β can replace v_j in the basis.]

Worked Example:

Find a basis for the vector space R^3 , that contains the vectors (1,2,1) and ((3,6,2).

 R^3 is a vector space of dimension3. The standard basis for R^3 is $\{\epsilon_1, \epsilon_2, \epsilon_3\}$ where $\epsilon_1 = (1,0,0), \epsilon_2 = (0,1,0), \epsilon_3 = (0,0,1)$.

Let $v_1 = (1,2,1), v_2 = (3,6,2)$. Then,

$$v_1 = 1 \in_1 + 2 \in_2 + 1 \in_3$$

Since the coefficients of \in_1 in the representation of v_1 is non-zero, by Replacement theorem v_1 can replace \in_1 in the basis $\{\in_1, \in_2, \in_3\}$ and $\{v_1, \in_2, \in_3\}$ can be a new basis for R^3 .

Let

$$v_2 = c_1 v_1 + c_2 \in_2 + c_3 \in_3$$

(3,6,2) = $c_1(1,2,1) + c_2(0,1,0) + c_3(0,0,1)$

So, $c_1 = 3, c_2 = 0, c_3 = -1$

Since the coefficient of \in_3 is non-zero, by replacement theorem v_2 can replace \in_3 in the basis $\{v_1, \in_2, \in_3\}$ and $\{v_1, \in_2, v_2\}$ can be a new basis for \mathbb{R}^3 .

Some Important Results on Basis and Dimension:

Let *V* be a finite dimensional vector space over a field *F* and $S = \{v_1, v_2, \dots, v_n\}$ be a basis of *V*i.e. the dimension of the vector space is *n*,then

- 1. Any subset of V containing more than n-vectors must be dependent.
- 2. Any subset of V containing less than n-vectors cannot span V.
- 3. Any two bases of the vector space V have the same number of elements.
- 4. A subset of V with n elements is a basis iff it is linearly independent.
- 5. A subset of V with n elements is a basis iff it is spanning set of V.
- 6. A linearly independent subset of this finite dimensional vector space V is either a basis or it can be extended to form a basis of V.
- 7. Every set of (n+1) vectors or more vectors is linearly dependent.

<u>Dimension of a subspace</u>: Let V(F) be a vector space of finite dimension and W is a subspace of V. Then the *dimW* is finite and *dimW* \leq *dimV*.

Dimension of linear sum of subspace: If W_1 and W_2 are two linear vector subspaces of a finite dimensional linear vector space V over a field F, then the dimension of their linear sum is

 $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim W_1 \cap W_2)$

Dimension of direct sum: If W_1 and W_2 are two linear vector subspaces of a finite dimensional linear vector space *V* over a field *F*, then the dimension of their direct sum is

 $\dim(W_1 + W_2) = \dim W = \dim W_1 + \dim W_2$

Dimension of a quotient space: In a finite dimensional vector space V(F) of dimension n, if W be a subspace of dimension m, then the dimension of the quotient space (V/W) is n-m.
