Dr. Barnali Dutta, Assistant Professor, Department of Mathematics

 Netaji Nagar Day CollegeTopic For
Semester-3, Paper-CC-6 (UG Hons.)

BASIS AND DIMENSION

Linearly Independent Set:A finite set of vectors $v_{1}, v_{2}, \ldots \ldots \ldots . v_{n}$ of a vector space V over a field F is said to be linearly independent if $c_{1} v_{1}+c_{2} v_{2}+\cdots \ldots \ldots .+c_{n} v_{n}=\theta$, $c_{i} \in F, i=1,2, \ldots \ldots n \rightarrow c_{i}=0 \forall i$ otherwise linearly dependent.

- If the set $S=\left\{v_{1}, v_{2}, \ldots \ldots \ldots . v_{n}\right\}$ of vectors of the vector space V over a field F be linearly independent then none of the vectors $v_{1}, v_{2}, \ldots \ldots \ldots . v_{n}$ can be a zero vector.
- A set of vectors containing the null vector θ in a vector space $V(F)$ is linearly dependent.
- The set consisting of a single non-zero vector α in a $V(F)$ is linearly independent.
- If two vectors be linearly dependent,then one of them is a scalar multiple of the other.

Spanning Set(Linear Span): Let V be a vector space over a field F and S be any non-empty subset of V, Then the linear span of S is defined as the set of all linear combination of the elements of S and denoted by $L(S)$.

BASIS

Definition: A basis S of a vector space V over a field F is a linearly independent subset of V that spans V. This means that a subset S of V is a basis if it satisfies the two following conditions:

- The linear independence property:

For every finite subset $\left\{v_{1}, v_{2}, \ldots \ldots \ldots . v_{m}\right\}$ of S if
$c_{1} v_{1}+c_{2} v_{2}+\cdots \ldots \ldots+c_{m} v_{m}=\theta$ for some $c_{1}=c_{2}=\cdots \ldots=c_{m}=0$ and

- The spanning property:

For every vector v in V, we can choose $a_{1}, a_{2}, \ldots \ldots, a_{n}$ in F and $v_{1}, v_{2}, \ldots \ldots \ldots v_{n}$ in S such that $v=a_{1} v_{1}+a_{2} v_{2}+\cdots \ldots \ldots+a_{n} v_{n}$
The scalars a_{i} are called the coordinates of the vector v with respect to the basis S.

Examples:

1. The set

$$
A=\{(1,0,0, \ldots \ldots . . .0),(0,1,0, \ldots \ldots . .0), \ldots \ldots(0,0,0, \ldots . .1,0),(0,0,0, \ldots \ldots . .0,1)\}
$$

is a basis of the n-dimensional vector space. This is called the standard basis .
2. The infinite set $S=\left\{1, x, x^{2}, \ldots \ldots, x^{n}, \ldots ..\right\}$ is a basis of a vector space $P(x)$ of all polynomials over a field F.
3. The real square matrix of second order

Dr. Barnali Dutta, Assistant Professor, Department of Mathematics Netaji Nagar Day College

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is a linear vector space, and that a basis of it is the subset $S=\{\alpha, \beta, \gamma, \delta\}$, where $\alpha, \beta, \gamma, \delta$ are matrices
$\alpha=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \quad \beta=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], \quad \gamma=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], \quad \delta=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.

Properties:

- If B is a linearly independent subset of a spanning set L subset of V, then there is a basis S such that $B C S C L$ that means
If $\left\{v_{1}, v_{2}, \ldots \ldots . . v_{m}\right\}$ be a basis of a finite dimensional vector space V over a field F then any linearly independent set of vectors in V contains at most m vectors.
- There exists atleast a basis for every finitely generated vector space.
- If there exist more than one basis of a vector space $V(F)$,all bases of $V(F)$ have the same cardinality, which is called the dimension of V.
- A generating set S is a basis of V iff it is minimal, i.e. no proper subset of S is also a generating set of V.
- A linearly independent set L is a basis iff it is maximal, i.e. it is not a proper subset of any linearly independent set.

DIMENSION

Definition: The number of vectors in a basis of a vector space V is said to be the dimension (or rank) of V and is denoted by $\operatorname{dim} V$. The null space $\{\theta\}$ is said to be of dimension 0.

Examples:

1) The dimension of the vector space R^{2} is 2 , since $E=\{(1,0),(0,1)\}$ is a basis.
2) The dimension of the vector space $R_{m \times n}$ of all $m \times n$ real matrices is $m n$, since the set $\left\{E_{11}, E_{12}, \ldots \ldots \ldots . E_{m n}\right\}$, where $E_{i j}$ is an $m \times n$ matrix having 1 as the $i j$ th element and 0 elsewhere, is a basis.
3) The dimension of the vector space P_{n} of all real polynomials in x of degree $<$ n together with the zero polynomial, is n. The set of polynomials $\{1, x, x 2, \ldots \ldots x n-1\}$ is a basis.
4) The vector space P of all real polynomials is infinite dimensional.

Worked Examples:

1. For what real values of k does the set $S=\{(k, 0,1),(1, k+1,1),(1,1,1)\}$ form a basis of R^{3}.

Solution: Since dimension of R^{3} is 3 and the no of element of the set S is 3 so S form a basis if S is linearly independent set.
i.e. $\left|\begin{array}{ccc}k & 0 & 1 \\ 1 & k+1 & 1 \\ 1 & 1 & 1\end{array}\right| \neq 0$
i.e. $k\{(k+1)-1\}+1\{1-(k+1)\} \neq 0$

Dr. Barnali Dutta, Assistant Professor, Department of Mathematics Netaji Nagar Day College

i.e. $k^{2}-k \neq 0$
i.e. $k(k-1) \neq 0$

Therefore for $k \neq 0,1$ the set S form a basis of R^{3}.
2. Let $\{\alpha, \beta, \gamma\}$ be a basis of a real vector space V and c be a non-zero real number. Prove that
$\{\alpha+c \beta, \beta, \gamma\}$ is a basis of V .
Solution: Since $\{\alpha, \beta, \gamma\}$ be a basis of V so the dimension of V is 3 .
So $\{\alpha+c \beta, \beta, \gamma\}$ is a basis of V if we show that this set is linearly independent.
Now,$c_{1}(\alpha+c \beta)+c_{2} \beta+c_{3} \gamma=\theta$
i.e. $c_{1} \alpha+\left(c_{1} c+c_{2}\right) \beta+c_{3} \gamma=\theta$
since $\{\alpha, \beta, \gamma\}$ be a basis of V so α, β, γ are linearly independent.
Therefore, from (1) $\quad c_{1}=0, c_{1} c+c_{2}=0, c_{3}=0$
i.e. $c_{1}=c_{2}=c_{3}=0$
so, $\{\alpha+c \beta, \beta, \gamma\}$ is a linearly independent set and therefore is a basis of V .

Replacement Theorem:

If $\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n}\right\}$ be a basis of a vector space V over a field F and a non-zero vector β of V is expressed as $\beta=a_{1} v_{1}+a_{2} v_{2}+\cdots \ldots \ldots+a_{n} v_{n}, a_{i} \in F$, then if $a_{j} \neq 0,\left\{v_{1}, v_{2}, \ldots, v_{j-1}, \beta, v_{j+1} \ldots \ldots, v_{n}\right\}$ is a new basis of V. That is, β can replace v_{j} in the basis.]

Worked Example:

Find a basis for the vector space R^{3},that contains the vectors $(1,2,1)$ and $((3,6,2)$.
R^{3} is a vector space of dimension3. The standard basis for R^{3} is $\left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right\}$ where $\epsilon_{1}=$ $(1,0,0), \epsilon_{2}=(0,1,0), \epsilon_{3}=(0,0,1)$.

Let $v_{1}=(1,2,1), v_{2}=(3,6,2)$. Then,

$$
v_{1}=1 \epsilon_{1}+2 \epsilon_{2}+1 \epsilon_{3}
$$

Since the coefficients of ϵ_{1} in the representation of v_{1} is non-zero, by Replacement theorem v_{1} can replace ϵ_{1} in the basis $\left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right\}$ and $\left\{v_{1}, \epsilon_{2}, \epsilon_{3}\right\}$ can be a new basis for R^{3}.

Let

$$
\begin{gathered}
v_{2}=c_{1} v_{1}+c_{2} \in_{2}+c_{3} \in_{3} \\
(3,6,2)=c_{1}(1,2,1)+c_{2}(0,1,0)+c_{3}(0,0,1)
\end{gathered}
$$

So, $c_{1}=3, c_{2}=0, c_{3}=-1$

Dr. Barnali Dutta, Assistant Professor, Department of Mathematics
 Netaji Nagar Day College

Since the coefficient of ϵ_{3} is non-zero, by replacement theorem v_{2} can replace ϵ_{3} in the basis $\left\{v_{1}, \epsilon_{2}, \epsilon_{3}\right\}$ and $\left\{v_{1}, \epsilon_{2}, v_{2}\right\}$ can be a new basis for R^{3}.

Some Important Results on Basis and Dimension:

Let V be a finite dimensional vector space over a field F and $S=\left\{v_{1}, v_{2}, \ldots \ldots \ldots . v_{n}\right\}$ be a basis of V i.e. the dimension of the vector space is n,then

1. Any subset of V containing more than n-vectors must be dependent.
2. Any subset of V containing less than n-vectors cannot span V.
3. Any two bases of the vector space V have the same number of elements.
4. A subset of V with n elements is a basis iff it is linearly independent.
5. A subset of V with n elements is a basis iff it is spanning set of V.
6. A linearly independent subset of this finite dimensional vector space V is either a basis or it can be extended to form a basis of V.
7. Every set of $(n+1)$ vectors or more vectors is linearly dependent.

Dimension of a subspace: Let $V(F)$ be a vector space of finite dimension and W is a subspace of V. Then the $\operatorname{dim} W$ is finite and $\operatorname{dim} W \leq \operatorname{dim} V$.

Dimension of linear sum of subspace:If W_{1} and W_{2} are two linear vector subspaces of a finite dimensional linear vector space V over a field F, then the dimension of their linear sum is

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

Dimension of direct sum:If W_{1} and W_{2} are two linear vector subspaces of a finite dimensional linear vector space V over a field F, then the dimension of their direct sum is

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} V=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}
$$

Dimension of a quotient space:In a finite dimensional vector space $V(F)$ of dimension n, if W be a subspace of dimension m , then the dimension of the quotient space (V/W) is $n-m$.

