Dr. Ujjwal Kumar Pahari, Assistant professor, Department of Mathematics

Netaji Nagar Day College Topic for—Paper MTMA CC-1 (Vector Analysis)

Vector Analysis: Application to Geometry and Mechanics

Vector: A directed line segment is a vector quantity. If the vector \overrightarrow{AB} is denoted by \vec{a} , then

its magnitude (i.e. length) is denoted by $|\overrightarrow{AB}| = |\overrightarrow{a}|$.

To a

Position Vector of a point: \overrightarrow{OP} is the position vector of the point P with respect to the point O. Similarly, \overrightarrow{PO} is the position vector of the point O with respect to the point P.

A -

Note: \overrightarrow{AB} = Position vector of the point **B** – Position vector of the point **A**.

Free vector: It can be shifted to any position in space keeping its length and direction unchanged.

Localised vector: It has a fixed line of support. It cannot be shifted to any position. Force vector is a localised vector as it depends upon position and direction.

Unit vector: vector having magnitude(length) a unit. Unit vector of \vec{a} is denoted by \hat{a} and is defined by $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$. Thus, $\vec{a} = |\vec{a}|\hat{a}$

Collinear vectors: Vectors parallel to a fixed line (not necessarily lying on the same line). In this case, vectors having the same direction are known as **like vectors** and having the opposite direction with respect to each other are termed to be **unlike vectors**.

Theorem: If the two non-zero vectors are collinear, then one can be expressed as a scalar multiple of the other. i.e. if \vec{a} and \vec{b} are collinear, then

$$\vec{a} = k\vec{b}$$
, $k = \text{some scalar}$.

Coplanar vectors: Vectors parallel to a fixed plane.

Note: Collinear vectors are always coplanar but the converse is not true.

Resolution of a vector: Let us take unit vector along x-axis as \hat{i} and along y-axis as \hat{j} . If a point P on a plane has coordinates (x, y), then abscissa of P is OM = x and ordinate of P is MP = y. Then $\overrightarrow{OM} = x\hat{i}$ and $\overrightarrow{MP} = y\hat{j}$ [as $|\overrightarrow{OM}| = x$, $|\overrightarrow{MP}| = y$].

Let $\overrightarrow{OP} = \vec{r}$. From the law of vector addition, $\overrightarrow{OP} = \overrightarrow{OM} + \overrightarrow{MP}$

$$\vec{r} = x\hat{\imath} + y\hat{\jmath}$$
 and $|\vec{r}| = \sqrt{x^2 + y^2}$

The unit vector along \vec{r} is $\hat{r} = \left(\frac{x}{r}\right)\hat{\iota} + \left(\frac{y}{r}\right)\hat{j}$

In three dimensions, if a point P has coordinates (x, y, z) and $\overrightarrow{OP} = \vec{r}$, then $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ where $\hat{\imath}$, $\hat{\jmath}$, \hat{k} are the unit vectors along x-axis, y-axis and z-axis respectively and $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$. Scalar Product or dot Productor: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ where θ ($0 \le \theta \le \pi$) is the angle between the direction of $\vec{a} \& \vec{b}$.

Properties: i) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

- ii) $\vec{a} \cdot \vec{a} = |\vec{a}|^2 = \vec{a}^2$
- iii) If $\vec{a} \ \& \ \vec{b}$ are mutually perpendicular, then $\vec{a} \cdot \vec{b} = 0$
- iv) If $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$ & $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$, then

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Component of a vector \vec{a} along a vector \vec{b} (Projection of \vec{a} along \vec{b}) is \overrightarrow{ON} which is

Component of a vector \vec{a} perpendicular to a vector \vec{b} is $\vec{NA} (= \vec{NO} + \vec{OA})$

$$\vec{a} - \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right)\hat{b}$$
 or $\vec{a} - \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$

Vector Product or cross Product: $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \ \hat{n}$ where $\theta \ (0 \le \theta \le \pi)$ is the angle between the direction of $\vec{a} \ \& \ \vec{b}$ and \hat{n} is the unit vector perpendicular to the plane of $\vec{a} \ \& \ \vec{b}$ and in the direction of translation of a right-handed screw due to the rotation from $\vec{a} \ to \ \vec{b}$.

Properties: i) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$

ii) If two vectors \vec{a} and \vec{b} are collinear, then $\vec{a} \times \vec{b} = 0$

iii) If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ & $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\iota} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

iv) Unit vector perpendicular to both \vec{a} and \vec{b} is $\pm \left(\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\right)$

Scalar Triple Product: $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \vec{a} \cdot (\vec{b} \times \vec{c})$. It is a scalar quantity.

Properties:

i) Numerical value of $\vec{a} \cdot (\vec{b} \times \vec{c})$ represents the **volume of a parallelopiped** having $\vec{a}, \vec{b}, \vec{c}$ as concurrent edges. Its sign will be positive or negative according as the vectors $\vec{a}, \vec{b}, \vec{c}$ form a right-handed system or a left-handed system.

ii) Three non-zero, non-collinear vectors \vec{a} , \vec{b} , \vec{c} are coplanar if and only if $[\vec{a} \ \vec{b} \ \vec{c}] = \vec{0}$

iii) If $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$ & $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$ & $\vec{c} = c_1\hat{\imath} + c_2\hat{\jmath} + c_3\hat{k}$ then

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Application to Geometry:

1. Area of a triangle: Area of a triangle OAB, where $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ is $\frac{1}{2} |\vec{a} \times \vec{b}|$ Vector area of triangle OAB is $\frac{1}{2} (\vec{a} \times \vec{b})$.

2. Area of a parallelogram: Area of a parallelogram OACB, where $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ is $|\vec{a} \times \vec{b}|$

Vector area of parallelogram OACB is $(\vec{a} \times \vec{b})$.

3. Volume of a tetrahedron: Volume of a tetrahedron OACB having triangle OAB as its base and C as fourth vertex where $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, $\overrightarrow{OC} = \vec{c}$ is $\frac{1}{6} [\vec{a} \ \vec{b} \ \vec{c}]$

Application to Mechanics:

1. Work done by a Force:

 \vec{F} = given force

 \vec{d} = displacement

Then, work done **W** by the force is given by $\boldsymbol{W} = \vec{F} \cdot \vec{d}$ (i.e. $W = |\vec{F}| |\vec{d}| \cos \theta$)

Note: Work done will be **Maximum** if \vec{F} and \vec{d} are in the same direction and work done will be **Minimum** if \vec{F} and \vec{d} are in the opposite directions. If the force \vec{F} and the displacement \vec{d} are mutually perpendicular, then work done will be zero.

2. Torque or Moment of a force about a point:

 \vec{F} = given force (a localised vector)

O = given point about which moment of \vec{F} is to be found

 \vec{r} =position vector of any point on the line of action of \vec{F}

Then, Moment of \vec{F} about the point O is $\vec{M} = \vec{r} \times \vec{F}$

Examples:

1. Find the torque about the point (1, 1, 1) of a force of magnitude 15 units acting at a point (2, -2, 2) in the direction of the vector $\hat{i} - 2\hat{j} + 2\hat{k}$.

Solution: Let \vec{F} be the given force. Then $|\vec{F}| = 15$ units.

Unit vector in the direction of the vector $\hat{i} - 2\hat{j} + 2\hat{k}$ is $\frac{\hat{i}-2\hat{j}+2\hat{k}}{\sqrt{1+4+4}} = \frac{1}{3}(\hat{i}-2\hat{j}+2\hat{k}).$

$$\therefore \quad \vec{F} = 15 \; \frac{1}{3} \left(\hat{\imath} - 2\hat{\jmath} + 2\hat{k} \right) = 5(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$$

P(2, -2, 2) is a point on the line of action of the force \vec{F}

Then, Position vector of P relative to the given point A(1, 1, 1) is

$$\vec{r} = \vec{AP} = (2, -2, 2) - (1, 1, 1) = (1, -3, 1) = \hat{\iota} - 3\hat{\jmath} + \hat{k}$$

The Torque about the point A of the force \vec{F} is

$$\vec{M} = \vec{r} \times \vec{F} = 5 \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 1 & -2 & 2 \end{vmatrix} = -20\hat{i} - 5\hat{j} + 5\hat{k}$$

Magnitude of the torque $|\vec{M}| = \sqrt{400 + 25 + 25} = 15\sqrt{2}$ units.

2. A particle being acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $\hat{3}\hat{i} + \hat{j} - \hat{k}$ is displaced from the point (1, 2, 3) to (5, 4, -1). Find the total work done.

Solution: Let $\overrightarrow{F_1} = 4\hat{\imath} + \hat{\jmath} - 3\hat{k}$ and $\overrightarrow{F_2} = 3\hat{\imath} + \hat{\jmath} - \hat{k}$

Displacement of the particle from A(1, 2, 3) to B(5, 4, -1) is

$$\vec{d} = \vec{AB} = (5, 4, -1) - (1, 2, 3) = (4, 2, -4) = 4\hat{\iota} + 2\hat{\jmath} - 4\hat{k}$$

Then, total work done by the forces $\overrightarrow{F_1}$ and $\overrightarrow{F_2}$ is

$$W = \vec{F_1} \cdot \vec{d} + \vec{F_2} \cdot \vec{d} = (16 + 2 + 12) + (12 + 2 + 4) = 48 \text{ units.}$$

3. Find the volume of the tetrahedron with vertices P (-1,2,0), Q (2,1, -3), R 1,0,1) and S (3, -2,3).

Solution:

Given vertices of the tetrahedron are P(-1, 2, 0), Q(2, 1, -3), R(1, 0, 1) and S(3, -2, 3)

The volume of a tetrahedron is equal to $\frac{1}{6}$ of the absolute value of the triple product.

$$V = \frac{1}{6} \begin{bmatrix} \vec{PQ} & \vec{PR} & \vec{PS} \end{bmatrix}$$

$$\rightarrow \vec{PQ} = 3i - j - 3k; \vec{PR} = 2i - 2j + k \text{ and } \vec{PS} = 4i - 4j + 3k$$

$$\Rightarrow V = \frac{1}{6} \begin{vmatrix} 3 & -1 & -3 \\ 2 & -2 & 1 \\ 4 & -4 & 3 \end{vmatrix}$$

$$\therefore V = \frac{2}{3}$$

4. If the diagonals of a parallelogram are equal then show by vector method that it is a rectangle. **Solution:**

Let OACB be a parallelogram where $\overrightarrow{OA} = \vec{a}$ and $\overrightarrow{OB} = \vec{b}$. Therefore, the diagonals are represented by the vectors $\overrightarrow{OC} = \vec{a} + \vec{b}$ and $\overrightarrow{BA} = \vec{a} - \vec{b}$. According to the problem, the diagonals are equal. i.e., OC = BA.

Therefore, \vec{a} and \vec{b} are perpendicular. i.e., angle between vector \overrightarrow{OA} and vector \overrightarrow{OB} is a right angle. i.e.,

Hence, OABC is a rectangle.