Dr. Ujjwal Kumar Pahari, Assistant professor, Department of Mathematics Netaji Nagar Day College
 Topic for-Paper MTMA CC-1 (Vector Analysis)

Vector Analysis: Application to Geometry and Mechanics

Vector: A directed line segment is a vector quantity. If the vector $\overrightarrow{A B}$ is denoted by \vec{a}, then its magnitude (i.e. length) is denoted by $|\overrightarrow{A B}|=|\vec{a}|$.

Position Vector of a point: $\overrightarrow{O P}$ is the position vector of the point P with respect to the point O. Similarly, $\overrightarrow{P O}$ is the position vector of the point O with respect to the point P .

Note: $\overrightarrow{A B}=$ Position vector of the point $\mathbf{B}-$ Position vector of the point \mathbf{A}.

Free vector: It can be shifted to any position in space keeping its length and direction unchanged.

Localised vector: It has a fixed line of support. It cannot be shifted to any position. Force vector is a localised vector as it depends upon position and direction.

Unit vector: vector having magnitude(length) a unit. Unit vector of \vec{a} is denoted by \hat{a} and is defined by $\hat{a}=\frac{\vec{a}}{|\vec{a}|}$. Thus, $\vec{a}=|\vec{a}| \hat{a}$

Collinear vectors: Vectors parallel to a fixed line (not necessarily lying on the same line). In this case, vectors having the same direction are known as like vectors and having the opposite direction with respect to each other are termed to be unlike vectors.

Theorem: If the two non-zero vectors are collinear, then one can be expressed as a scalar multiple of the other. i.e. if \vec{a} and \vec{b} are collinear, then

$$
\overrightarrow{\boldsymbol{a}}=\boldsymbol{k} \overrightarrow{\boldsymbol{b}}, \quad k=\text { some scalar. }
$$

Coplanar vectors: Vectors parallel to a fixed plane.
Note: Collinear vectors are always coplanar but the converse is not true.
Resolution of a vector: Let us take unit vector along x-axis as $\hat{\imath}$ and along y-axis as $\hat{\jmath}$. If a point P on a plane has coordinates (x, y), then abscissa of P is $\mathrm{OM}=\mathrm{x}$ and ordinate of P is $\mathrm{MP}=\mathrm{y}$. Then $\overrightarrow{O M}=x \hat{\imath}$ and $\overrightarrow{M P}=y \hat{\jmath}[$ as $|\overrightarrow{O M}|=x,|\overrightarrow{M P}|=y]$.

Let $\overrightarrow{O P}=\vec{r}$. From the law of vector addition, $\quad \overrightarrow{O P}=\overrightarrow{O M}+\overrightarrow{M P}$

$$
\vec{r}=x \hat{\imath}+y \hat{\jmath} \text { and }|\vec{r}|=\sqrt{x^{2}+y^{2}}
$$

The unit vector along \vec{r} is $\hat{r}=\left(\frac{x}{r}\right) \hat{\imath}+\left(\frac{y}{r}\right) \hat{\jmath}$

In three dimensions, if a point P has coordinates $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\overrightarrow{O P}=\vec{r}$, then $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ where $\hat{\imath}, \hat{\jmath}, \hat{k}$ are the unit vectors along x -axis, y -axis and z -axis respectively and

$$
|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}} .
$$

Scalar Product or dot Productor: $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$ where $\theta(0 \leq \theta \leq \pi)$ is the angle between the direction of $\vec{a} \& \vec{b}$.

Properties: i) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
ii) $\vec{a} \cdot \vec{a}=|\vec{a}|^{2}=\vec{a}^{2}$
iii) If \vec{a} \& \vec{b} are mutually perpendicular, then $\vec{a} \cdot \vec{b}=0$
iv) If $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k} \quad \& \quad \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$, then

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Component of a vector \vec{a} along a vector \vec{b} (Projection of \vec{a} along \vec{b}) is $\overrightarrow{O N}$ which is

$$
\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right) \hat{b} \quad \text { or } \quad\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}}\right) \vec{b}
$$

Component of a vector \vec{a} perpendicular to a vector \vec{b} is $\overrightarrow{N A}(=\overrightarrow{N O}+\overrightarrow{O A})$

$$
\vec{a}-\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right) \hat{b} \quad \text { or } \quad \vec{a}-\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}}\right) \vec{b}
$$

Vector Product or cross Product: $\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}$ where $\theta(0 \leq \theta \leq \pi)$ is the angle between the direction of $\vec{a} \& \vec{b}$ and \hat{n} is the unit vector perpendicular to the plane of $\vec{a} \& \vec{b}$ and in the direction of translation of a right-handed screw due to the rotation from \vec{a} to \vec{b}.

Properties: i) $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
ii) If two vectors \vec{a} and \vec{b} are collinear, then $\vec{a} \times \vec{b}=0$
iii) If $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k} \quad \& \quad \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$, then

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

iv) Unit vector perpendicular to both \vec{a} and \vec{b} is $\pm\left(\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\right)$

Scalar Triple Product: $\quad[\overrightarrow{\boldsymbol{a}} \overrightarrow{\boldsymbol{b}} \overrightarrow{\boldsymbol{c}}]=\overrightarrow{\boldsymbol{a}} \cdot(\vec{b} \times \vec{c})$. It is a scalar quantity.

Properties:

i) Numerical value of $\overrightarrow{\boldsymbol{a}} \cdot(\vec{b} \times \vec{c})$ represents the volume of a parallelopiped having $\vec{a}, \vec{b}, \vec{c}$ as concurrent edges. Its sign will be positive or negative according as the vectors $\vec{a}, \vec{b}, \vec{c}$ form a right-handed system or a left-handed system.
ii) Three non-zero, non-collinear vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar if and only if $[\overrightarrow{\boldsymbol{a}} \overrightarrow{\boldsymbol{b}} \overrightarrow{\boldsymbol{c}}]=\overrightarrow{\mathbf{0}}$
iii) If $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k} \quad \& \quad \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k} \quad \& \vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ then

$$
\left[\begin{array}{lll}
\overrightarrow{\boldsymbol{a}} & \overrightarrow{\boldsymbol{b}} & \overrightarrow{\boldsymbol{c}}
\end{array}\right]=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Application to Geometry:

1. Area of a triangle: Area of a triangle OAB , where $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$ is $\frac{1}{2}|\vec{a} \times \vec{b}|$

Vector area of triangle OAB is $\frac{1}{2}(\vec{a} \times \vec{b})$.

2. Area of a parallelogram: Area of a parallelogram OACB , where $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$ is $|\vec{a} \times \vec{b}|$

Vector area of parallelogram OACB is $(\vec{a} \times \vec{b})$.

3. Volume of a tetrahedron: Volume of a tetrahedron OACB having triangle OAB as its base and C as fourth vertex where $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}$ is $\frac{1}{6}[\overrightarrow{\boldsymbol{a}} \overrightarrow{\boldsymbol{b}} \overrightarrow{\boldsymbol{c}}]$

Application to Mechanics:

1. Work done by a Force:

$=$ Displacement in the direction of force \vec{F}
$\overrightarrow{\boldsymbol{F}}=$ given force
$\overrightarrow{\boldsymbol{d}}=$ displacement
Then, work done \mathbf{W} by the force is given by $\boldsymbol{W}=\overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{\boldsymbol{d}}$

$$
\text { (i.e. } W=|\overrightarrow{\boldsymbol{F}}||\overrightarrow{\boldsymbol{d}}| \cos \theta \text {) }
$$

Note: Work done will be Maximum if \vec{F} and \vec{d} are in the same direction and work done will be Minimum if \vec{F} and \vec{d} are in the opposite directions. If the force \vec{F} and the displacement \vec{d} are mutually perpendicular, then work done will be zero.

2. Torque or Moment of a force about a point:

$\overrightarrow{\boldsymbol{F}}=$ given force (a localised vector)
$\mathrm{O}=$ given point about which moment of $\overrightarrow{\boldsymbol{F}}$ is to be found
$\overrightarrow{\boldsymbol{r}}=$ position vector of any point on the line of action of $\overrightarrow{\boldsymbol{F}}$
Then, Moment of $\overrightarrow{\boldsymbol{F}}$ about the point O is $\overrightarrow{\boldsymbol{M}}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}}$

Examples:

1. Find the torque about the point $(1,1,1)$ of a force of magnitude 15 units acting at a point $(2,-2,2)$ in the direction of the vector $\hat{\imath}-2 \hat{\jmath}+2 \hat{k}$.

Solution: Let \vec{F} be the given force. Then $|\vec{F}|=15$ units.
Unit vector in the direction of the vector $\hat{\imath}-2 \hat{\jmath}+2 \hat{k}$ is $\frac{\hat{\imath}-2 \hat{\jmath}+2 \hat{k}}{\sqrt{1+4+4}}=\frac{1}{3}(\hat{\imath}-2 \hat{\jmath}+2 \hat{k})$.

$$
\therefore \quad \vec{F}=15 \frac{1}{3}(\hat{\imath}-2 \hat{\jmath}+2 \hat{k})=5(\hat{\imath}-2 \hat{\jmath}+2 \hat{k})
$$

$\mathrm{P}(2,-2,2)$ is a point on the line of action of the force \vec{F}
Then, Position vector of P relative to the given point $\mathrm{A}(1,1,1)$ is

$$
\vec{r}=\overrightarrow{A P}=(2,-2,2)-(1,1,1)=(1,-3,1)=\hat{\imath}-3 \hat{\jmath}+\hat{k}
$$

The Torque about the point A of the force \vec{F} is

$$
\overrightarrow{\boldsymbol{M}}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}}=\mathbf{5}\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -3 & 1 \\
1 & -2 & 2
\end{array}\right|=-\mathbf{2 0} \hat{\imath}-5 \hat{\jmath}+5 \hat{k}
$$

Magnitude of the torque $|\vec{M}|=\sqrt{400+25+25}=15 \sqrt{2}$ units.
2. A particle being acted on by constant forces $4 \hat{\imath}+\hat{\jmath}-3 \hat{k}$ and $\widehat{3 l}+\hat{\jmath}-\hat{k}$ is displaced from the point $(1,2,3)$ to $(5,4,-1)$. Find the total work done.

Solution: Let $\overrightarrow{F_{1}}=4 \hat{\imath}+\hat{\jmath}-3 \hat{k}$ and $\overrightarrow{F_{2}}=\widehat{3 l}+\hat{\jmath}-\hat{k}$
Displacement of the particle from $\mathrm{A}(1,2,3)$ to $\mathrm{B}(5,4,-1)$ is

$$
\vec{d}=\overrightarrow{A B}=(5,4,-1)-(1,2,3)=(4,2,-4)=4 \hat{\imath}+\widehat{2}-4 \hat{k}
$$

Then, total work done by the forces $\overrightarrow{F_{1}}$ and $\overrightarrow{F_{2}}$ is
$W=\overrightarrow{F_{1}} \cdot \vec{d}+\overrightarrow{F_{2}} \cdot \vec{d}=(16+2+12)+(12+2+4)=48$ units.
3. Find the volume of the tetrahedron with vertices $\mathrm{P}(-1,2,0), \mathrm{Q}(2,1,-3), \mathrm{R} 1,0,1)$ and $(3,-2,3)$.

Solution:

Given vertices of the tetrahedron are $\mathrm{P}(-1,2,0), \mathrm{Q}(2,1,-3), \mathrm{R}(1,0,1)$ and $\mathrm{S}(3,-2,3)$
The volume of a tetrahedron is equal to $\frac{1}{6}$ of the absolute value of the triple product.
$\mathrm{V}=\frac{1}{6}\left[\begin{array}{lll}\overrightarrow{\mathrm{PQ}} & \overrightarrow{\mathrm{PR}} & \overrightarrow{\mathrm{PS}}\end{array}\right]$
$\rightarrow \overrightarrow{\mathrm{PQ}}=3 \mathrm{i}-\mathrm{j}-3 \mathrm{k} ; \overrightarrow{\mathrm{PR}}=2 \mathrm{i}-2 \mathrm{j}+\mathrm{k}$ and $\overrightarrow{\mathrm{PS}}=4 \mathrm{i}-4 \mathrm{j}+3 \mathrm{k}$
$\Rightarrow \mathrm{V}=\frac{1}{6}\left|\begin{array}{llc}3 & -1 & -3 \\ 2 & -2 & 1 \\ 4 & -4 & 3\end{array}\right|$
$\therefore \mathrm{V}=\frac{2}{3}$
4. If the diagonals of a parallelogram are equal then show by vector method that it is a rectangle.

Solution:

Let OACB be a parallelogram where $\overrightarrow{O A}=\vec{a}$ and $\overrightarrow{O B}=\vec{b}$. Therefore, the diagonals are represented by the vectors $\overrightarrow{O C}=\vec{a}+\vec{b}$ and $\overrightarrow{B A}=\vec{a}-\vec{b}$.
According to the problem, the diagonals are equal. i.e., $\mathrm{OC}=\mathrm{BA}$.
$\therefore|\overrightarrow{O C}|=|\overrightarrow{B A}| \quad$ or $\quad|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$
or, $|\vec{a}+\vec{b}|^{2}=|\vec{a}-\vec{b}|^{2}$
or, $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})$
or, $|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}=|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}$
or, $\overrightarrow{4 a} \cdot \vec{b}=0$
or, $\vec{a} \cdot \vec{b}=0$
Therefore, \vec{a} and \vec{b} are perpendicular.
i.e., angle between vector $\overrightarrow{O A}$ and vector $\overrightarrow{O B}$ is a right angle.
i.e.,
$\angle B O A=90^{\circ}$
Hence, OABC is a rectangle.

